Comparative Transcriptome Profiling of the Maize Primary, Crown and Seminal Root in Response to Salinity Stress

نویسندگان

  • Maolin Zhang
  • Xiangpei Kong
  • Xiangbo Xu
  • Cuiling Li
  • Huiyu Tian
  • Zhaojun Ding
چکیده

Soil salinity is a major constraint to crop growth and yield. The primary and lateral roots of Arabidopsis thaliana are known to respond differentially to a number of environmental stresses, including salinity. Although the maize root system as a whole is known to be sensitive to salinity, whether or not different structural root systems show differential growth responses to salinity stress has not yet been investigated. The maize primary root (PR) was more tolerant of salinity stress than either the crown root (CR) or the seminal root (SR). To understand the molecular mechanism of these differential growth responses, RNA-Seq analysis was conducted on cDNA prepared from the PR, CR and SR of plants either non-stressed or exposed to 100 mM NaCl for 24 h. A set of 444 genes were shown to be regulated by salinity stress, and the transcription pattern of a number of genes associated with the plant salinity stress response differed markedly between the various types of root. The pattern of transcription of the salinity-regulated genes was shown to be very diverse in the various root types. The differential transcription of these genes such as transcription factors, and the accumulation of compatible solutes such as soluble sugars probably underlie the differential growth responses to salinity stress of the three types of roots in maize.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted earl...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Assessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress

Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...

متن کامل

Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1.

The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in t...

متن کامل

Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis

Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015